GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1
$\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x-2}$
M1 For correct format
$A(x-1)(x-2)+B(x-2)+C(x-1)^{2} \equiv x^{2}$
M1
$A=-3$
$B=-1$
$C=4$
B1 or $-\sin x+\sin ^{2} x+\cos ^{2} x$
A1 Accept $-\frac{1}{\sin x-1}$
4
[NB1: Partial fractions need not be written out; correct format + correct values sufficient.
NB2: Having obtained $B \& C$ by cover-up rule, candidates may substitute into general expression \& algebraically manipulate; the M1 \& A1 are then available if deserved.]

These special cases using different formats are the only other ones to be considered \quad Max $\frac{A}{x-1}+\frac{B x+C}{(x-1)^{2}}+\frac{D}{x-2} ;$ M1 M1; A0 for any values of $A, B \& C, \mathrm{~A} 1$ or B 1 for $D=4 \quad 3$ $\frac{A x+B}{(x-1)^{2}}+\frac{C}{x-2} ; \quad$ M0 M1; A1 for $A=-3$ and $B=2, \quad$ A1 or B1 for $C=4 \quad 3$

4
$\frac{\mathrm{d}}{\mathrm{d} x}(x y)=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \quad$ s.o.i.
$\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Diff eqn($=0$ can be implied)(solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and) put $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \mathrm{M} 1$
Produce only $2 x+4 y=0$ (though AEF acceptable) *A1
Eliminate x or y from curve eqn \& eqn(s) just produced M1
Produce either $x^{2}=36$ or $y^{2}=9$
dep* A1
dep* A1

6 (i) State/imply scalar product of any two vectors $=0$
Scalar product of correct two vectors $=4+2 a-6$ $a=1$
(ii) (a) Attempt to produce at least two relevant equations

Solve two not containing ' a ' for s and t
Obtain at least one of $s=-\frac{1}{2}, t=1$
Substitute in third equation \& produce $a=-2$
(b) Method for finding magnitude of any vector

Using $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \boldsymbol{b} \mid}$ for the pair of direction vectors
$107,108(107.548)$ or $72,73,72.4,72.5(72.4516)$ c.a.o. A1 $3 \underline{1.87,1.88(1.87707) \text { or } 1.26}$

7 (i) Differentiate x as a quotient, $\frac{v \mathrm{~d} u-u \mathrm{~d} v}{v^{2}}$ or $\frac{u \mathrm{~d} v-v \mathrm{~d} u}{v^{2}}$ M1 or product clearly defined $\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{1}{(t+1)^{2}}$ or $\frac{-1}{(t+1)^{2}} \quad$ or $-(t+1)^{-2} \quad$ A1 $\quad \mathrm{WWW} \rightarrow 2$
$\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{2}{(t+3)^{2}}$ or $\frac{-2}{(t+3)^{2}}$ or $-2(t+3)^{-2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$
M1 quoted/implied and used
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2(t+1)^{2}}{(t+3)^{2}} \quad$ or $\frac{2(t+3)^{-2}}{(t+1)^{-2}} \quad\left(\right.$ dep $1^{\text {st }} 4$ marks $) * A 1 \quad$ ignore ref $t=-1, t=-3$
State squares + ve or $(t+1)^{2} \&(\mathrm{t}+3)^{2}+\mathrm{ve} \therefore \frac{\mathrm{d} y}{\mathrm{~d} x}+$ ve \quad dep*A1 6 or $\left(\frac{t+1}{t+3}\right)^{2}+$ ve. Ignore ≥ 0
(ii) Attempt to obtain t from either the x or y equation

M1 No accuracy required
$t=\frac{2-x}{x-1} \quad$ AEF $\quad \underline{\text { or }} \quad t=\frac{2}{y}-3 \quad$ AEF
Substitute in the equation not yet used in this part
A1

Use correct meth to eliminate ('double-decker') fractions
Obtain $2 x+y=2 x y+2$ ISW AEF
A1 5 but not involving fractions

8 (i) Long division method

Identity method

Evidence of division process as far as $1^{\text {st }}$ stage incl sub
(Quotient =) $x-4$
(Remainder $=$) 2 ISW
(ii) (a) Separate variables; $\int \frac{1}{y-5} \mathrm{~d} y=\int \frac{x^{2}-5 x+6}{x-1} \mathrm{~d} x$

Change $\frac{x^{2}-5 x+6}{x-1}$ into their (Quotient $+\frac{\mathrm{Rem}}{x-1}$)
M1
$\ln (y-5)=\sqrt{ }$ (integration of their previous result) $(+c)$ ISW $\sqrt{ }$ A1 3 f.t. if using Quot $+\frac{\text { Rem }}{x-1}$
(ii) (b) Substitute $y=7, x=8$ into their eqn containing ' c '

M1 $\quad \&$ attempt ' $c^{\prime}\left(-3.2, \ln \frac{2}{49}\right)$
Substitute $x=6$ and their value of ' c '
$y=5.00 \quad$ (5.002529) Also $5+\frac{50}{49} \mathrm{e}^{-6}$
M1 \& attempt to find y
A2 4 Accept 5, 5.0,
Beware: any wrong working anywhere $\rightarrow \mathrm{A} 0$ even if answer is one of the acceptable ones.

9 (i) Attempt to multiply out $(x+\cos 2 x)^{2}$
Finding $\int 2 x \cos 2 x \mathrm{~d} x$
Use $u=2 x, \mathrm{~d} v=\cos 2 x$
$1^{\text {st }}$ stage $x \sin 2 x-\int \sin 2 x \mathrm{~d} x$
$\therefore \int 2 x \cos 2 x \mathrm{~d} x=x \sin 2 x+\frac{1}{2} \cos 2 x$
$\underline{\text { Finding }} \int \cos ^{2} 2 x \mathrm{~d} x$
Change to $k \int+/-1+/-\cos 4 x \mathrm{~d} x$
Correct version $\frac{1}{2} \int 1+\cos 4 x \mathrm{~d} x$
$\int \cos 4 x \mathrm{~d} x=\frac{1}{4} \sin 4 x$
B1 seen anywhere in this part
Result $=\frac{1}{2} x+\frac{1}{8} \sin 4 x$
(i) ans $=\frac{1}{3} x^{3}+x \sin 2 x+\frac{1}{2} \cos 2 x+\frac{1}{2} x+\frac{1}{8} \sin 4 x(+\mathrm{c})$
(ii) $\mathrm{V}=\pi \int_{0}^{\frac{1}{2} \pi}(x+\cos 2 x)^{2}(\mathrm{~d} x)$

A1

A1

A1 9 Fully correct

Use limits $0 \& \frac{1}{2} \pi$ correctly on their (i) answer
M1
(i) correct value $=\frac{1}{24} \pi^{3}-\frac{1}{2}+\frac{1}{4} \pi-\frac{1}{2}$

Final answer $=\pi\left(\frac{1}{24} \pi^{3}+\frac{1}{4} \pi-1\right)$

M1 where $k=\frac{1}{2}, 2$ or 1
M1 $1^{\text {st }}$ stage $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$ A1

A1

B1 for reducing to a fraction with $1-\sin x$ or $-\sin x+\sin ^{2} x+\cos ^{2} x$ in the numerator
A1 for correct final answer of $\frac{1}{1-\sin x}$ or $(1-\sin x)^{-1}$
6(ii)(a) If candidates use some long drawn-out method to find ' a ' instead of the direct route, allow
M1 as before, for producing the 3 equations
M1 for any satisfactory method which will/does produce ' a ', however involved
A2 for $a=-2$
7(ii) Marks for obtaining this Cartesian equation are not available in part (i).
If part (ii) is done first and then part (i) is attempted using the Cartesian equation, award marks as follow:
Method 1 where candidates differentiate implicitly
M1 for attempt at implicit differentiation
A1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-2}{1-2 x}$ AEF
M1 for substituting parametric values of x and y
A2 for simplifying to $\frac{2(t+1)^{2}}{(t+3)^{2}}$
A1 for finish as in original method
Method 2 where candidates manipulate the Cartesian equation to find $x=$ or $y=$
M1 for attempt to re-arrange so that either $y=\mathrm{f}(x)$ or $x=\mathrm{g}(y)$
A1 for correct $y=\frac{2-2 x}{1-2 x}$ AEF or $x=\frac{2-y}{2-2 y} \quad$ AEF
M1 for differentiating as a quotient
A2 for obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{(1-2 x)^{2}}$ or $\frac{(2-2 y)^{2}}{2}$
A1 for finish as in original method
8(ii)(b) If definite integrals are used, then
M2 for []$_{y}^{7}=[]_{6}^{8}$ or equivalent or M1 for []$_{7}^{y}=[]_{6}^{8}$ or equivalent
A2 for $5,5.0,5.00$ (5.002529) with caveat as in main scheme $\operatorname{dep} \mathrm{M} \underline{2}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

